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Introduction and course outline
Objectives of pumping tests BM

A refresher about radial flow to wells and common assumptions and
misconceptions in well pumping tests

Step drawdown tests, constant rate tests and recovery tests

Common steady-state and non-steady state analysis methods BM

Design, Construction and Operation of Water Supply Boreholes in Ireland.
Influence of well design on abstraction, drawdown and quality. DB

Coffee
Yield-drawdown relationships in fractured aquifers.
Assessing sustainable yields from pumping tests & using operational

data BM

Summarising transmissivity & storage of Irish aquifers; the implications for a

sustainable yield. THW
Pump selection based on test pumping results HM
Case study — Assessments and Interpretations from operational pumping
records. DB
Lunch

Practicalities of undertaking well testing: — planning, set-up and
implementation. Possible constraints. Onsite data analysis and decision-

making. HM
Pump test analyses software and their uses and limitations HM
Case Study - Quarry Dewatering DB
Case Study - To Be Determined DB

Discussion; final questions; and close of course
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Outline —

[l Conceptual models for Irish fractured aquifers

|| Aquifer properties

|| Influence on borehole yield of aquifer heterogeneities
[l Implications for sustainable yield

[/ Summary and Conclusions
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CONCEPTUAL MODELS

Photo credits: Donal Daly/others
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Fissured bedrock aquifer conceptual model —

A —————

Fewisolated
fractures

from Kelly et al. (2015)
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Fissured bedrock aquifer conceptual model —
Generally transmissive limestone aquifer ‘Generally poorly transmissive limestone aquifer

v

Mgt of watar tabe aboww artitray gt base
g o watertate abows ariiray sadie base

bz base

from Fitzsimons et al. (2005)

Fissured bedrock aquifer conceptual model —~

Key
B m of al:g':;)P'm.mmy Subsol @ e Relative degree of transmissivity

of bedrock aquifer
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(right of diagram)
re— Perched Water Table

Lower
~—__v Flow pathway

-~~~ Groundwater Table

by Daly and Hunter Williams, in RPS 2008
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Fissured bedrock aquifer conceptual model —

A 3 km long fault
zone. Theoretical
yield 600 m3/d

Bulk fissured
rockT=
B 0.5 km long fault
zone. Theoretical
yield 100 m3/d

C 3 km fault zone.
Theoretical yield
2,000 m3/d

Bulk fissured
rock T

Annual recharge of
250 mm in all cases

From Gl (in prep.) and adapted from images and calculations by Vincent Fitzsimons
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AQUIFER PROPERTIES —~

Image: https:, ts
L)
Scale of measurement —
Falling
Pumping Packer head
out test test test

elementary volume ?

100z to 1000's matres 10 metres.
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Anisotropy & scale of heterogeneity

anisotropy
10’s - 100°s — 1000's m

(plan view)

Activity of
interest

Limitations of typical Irish
pumping test data

 analytical assumptions often not met
relatively short tests

declining or variable pumping rates
unknown geology/ construction details

frequently single well

none/inadequate observation well data
throttling of different fractures
bias towards one single large fracture

often only yield and specific capacity reported

IRISH AQUIFER PROPERTIES ~
A REFERENCE MANUAL AND GUIDE

VERSION 1 MARCH 2015 http:

B
cpa

www.gsi.ie/pro,

rammes/groundwater/
aquifer+classification
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http://www.gsi.ie/programmes/groundwater/aquifer+classification
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Aquifer properties database —

« Compiled >600 data, many 3™ party

Screening for quality, detailed ‘paper trail’

Issues with data

— ‘pseudo T’, ‘bulk K’, fracture K, biases

— obtaining data — no legal framework

» Database is beginning of a useful reference for
practitioners within a hydrostratigraphic framework

* Summary tables indicate typical properties and ranges

* Focus on transmissivity, more fracture K and storage
parameters needed

Aquifer properties database —

* Biases in dataset

— “high” quality T data tend to be from successful
water supply investigations

— “supplementary” data from smaller abstractions with
less precise measurements

— short tests can give overestimates
* Uncertainties in dataset

— interval(s) being tested

— influence of heterogeneities

* Number of data per aquifer type similar to area, but
rock unit groups over/under-represented

Reporting framework for aquifer properties —~

T e S

Aquifer category
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Rock Unit Group <

555> Aquifer category << —
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Transmissivity (m/d)
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Bulk permeability vs depth
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INFLUENCE OF HETEROGENEITIES
ON YIELD

Photo: Robbie Mechan

Constant Rate Test, Shinrone, Pumping & Observation Wells. 21-02-03 to 23-02-03
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Early time during pumping test: ~100 mins ‘ ly

New well Old well
Ground surface - )

Flow through very
small fractures

Flow through large,
connected fracture

Direction of water
l»t level - falling or

L 173m rising

96 m

«— 3m




Ground surface

55.25m

58-59 m MG

test: ~500 mins

New well Old well

—— 9%m

Flow through very
small fractures

Flow through large,
connected fracture

Direction of water
BT fevel - falling or

rising

Mid- time during pumpi

Ground surface

test: ~1000 mins

New well Old well
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Flow through very
small fractures

Flow through large,
connected fracture

Direction of water
BT fevel- falling or

rising
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IMPLICATIONS FOR SUSTAINABLE —

YIELD

WATER-TABLE DRAWDOWN AND RECOVERY AFTER PUMPING

2o of e
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STAGES OF AQUIFER DEPLETION
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@ v R e -
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Implications for sustainable yield — —
hydraulics

Dewatering of most
Pumping transmissive zone in
out test the vicinity of the
borehole

Cumulative T (m?/d)

K (m/d)
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Implications for sustainable yield — storage
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Maximum and minimum GW levels at —~
Woodsgift/Borrismore Creek
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Maximum and minimum GW levels after —~
dryer than usual years
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Summary (1) —

Detailed studies and general pumping-out tests show that
permeability typically decreases with depth and can have a
significant impact on sustainable yield.
Effective porosity and unconfined groundwater storage is low
across all fissured bedrock aquifer categories.
Low storage in Irish fissured bedrock aquifers can result in water
level declines and decrease in saturated thickness of most
transmissive zone
— During non-recharge periods or after prolonged dry weather, higher
transmissivity zone thickness decreases and yields drop off
— GSl recharge map represents ‘deep’ groundwater zone for this reason
Poorly productive aquifers (i.e. Pu, Pl, LI) are probably self-limiting
in dry weather scenarios
— Once higher transmissivity shallow zone dewaters, groundwater flow
decreases and wide-spread overexploitation difficult

12

Summary (2) —

Seems to be a multi-annual groundwater level ‘memory’ related to
dry years. However, this is a small effect at Woodsgift.
Generally, groundwater level recovery in unconfined fractured
aquifers is rapid after onset of potential recharge period
— Fractured bedrock groundwater systems may be resilient to historical
weather patterns
— Dry winters more relevant than dry summers
— IF wetter winters and longer, dryer summers become the norm, then
poorly productive aquifers may generally behave as normal — the
issue arises with increased water demand and the duration of the dry
period

25/11/2019
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Conclusions

Developing sustainable yields from Irish bedrock aquifers requires an
understanding of the nature and distribution of the fissuring that
generates permeability within the aquifer, and how this will influence
groundwater supply source development and operation.

The low storage capacity of Irish fractured bedrock aquifers in one
sense is a drawback: low storage results in seasonal groundwater
level declines of at least several metres, and often more. This results
in a decrease in saturated thickness of the transmissive ‘shallow
bedrock’, which then impacts on possible abstraction rates.

However, low effective porosity and storage may also be seen as
beneficial, since groundwater levels recover rapidly with the onset of
the groundwater recharge period.

Need to deal with what nature has provided us with and adapt our
usage of the resource — “sip” the aquifer.

\IE
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